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Most collocated cokriging (and cosimulation) programs are based on the use of one secondary variable; 
however, it is common to have multiple secondary data.  Under a multivariate Gaussian model, multiple 
secondary data can be merged into one secondary variable for use in standard cosimulation software.  The 
idea is presented with examples.  The super secondary variable must be restandardized to unit variance 
and the correct correlation coefficient calculated.  The theoretical validity of the approach is established. 

Problem Setting 

The context of this note relates to estimating a primary 
variable in presence of multiple secondary data.  We could be 
applying the procedure in a sequential fashion, that is, a 
primary variable in one pass of simulation could be a 
secondary variable in a second step.  In this context, we could 
consider nsec secondary data consisting of exhaustively 
sampled secondary data and previously simulated primary 
data and one primary variable that is being predicted at the 
current step.  The secondary data are denoted ys,i, i=1,…,nsec 
(the colored squares in the schematic to the right).  The 
primary variable is denoted y0 or y.  We are interested in 
predicting the uncertainty in y at a location of interest (the 
blue circle in the schematic to the right).  There are a number 
of primary data at other locations y(ui)=yi, i=1,…n (the 
yellow circles in the schematic to the right).  What is not 
communicated in the schematic to the right is that there are 
secondary data at all locations; however, we only use the 
collocated ones when considering a location of interest. 

All secondary variables and the primary variable are standardized with means of 0 and variances of 1, 
which is the case when we adopt a multivariate Gaussian model or if we simply scale the data according to 
y=(z-m)/σ.  We are working within the classic collocated cokriging paradigm, that is, we only use 
secondary data at the location being estimated and we adopt an intrinsic model for the cross covariances, 
that is, the cross covariances are proportional to the covariance structure of the primary variable.  We could 
be estimating at the unsampled location, predicting uncertainty in PostMG fashion or, more commonly, 
using the conditional distribution for simulation in a sequential Gaussian paradigm. 

Collocated Cokriging 

Collocated cokriging can be implemented with multiple secondary data.  The form of the estimator and 
estimation variance: 
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The a’s and b’s are weights applied to the primary and secondary data, respectively.  The ρ values are 
correlation coefficients between each primary and secondary data and the primary variable at the location 
being estimated.  The secondary data are at the location being estimated and the primary data are at other 
locations.  The estimate and estimation variance are, of course, the mean and variance of the conditional 
distribution in a multivariate Gaussian context.  The equations to compute the n+nsec weights: 
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These equations can be shown in matrix form (below).  Note the parts of the system measuring redundancy 
between data sources (left) and closeness to what is being estimated (right). 

 
These are standard cokriging equations.  The different correlation coefficients are computed from the 
following sources: 

 

( ),

,

, sec

correlation between primary data:

calculated from normal scores variogram: 1

correlation between primary valuesand secondary data:

calculated from Markov model:

, , 0,...,

, 0,..., ; 1,...,
j

i j i j

s

i j

s i

i j n

i n j n

ρ γ

ρ

ρ

ρ

= − −

=

= =

u u

, ,0 ,0

, sec

= 

correlation between secondary data:

calculated directly from thesecondary data

, , 0,...,
j j

j i

i s i

s s i j n

ρ ρ

ρ =

i
 

Note that the only variogram requires is the variogram of the primary variable, which is used to compute 
the correlation between the primary data at other locations to the location being estimated.  The spatial 
correlation structure of the secondary data is not required because the secondary data are only used at the 
location being estimated.  The cross spatial correlation between primary data at other locations and the 
secondary data at the location being estimated are estimated through a Markov-type assumption, that is, the 
cross variograms are assumed to have the same shape – the sill is scaled to the correct cross correlation. 

Software could be modified to solve these equations.  There is a need, however, to use legacy code such as 
the standard GSLIB program or commercial software such as Petrel© and Pangeos© that commonly permit 
only one variable at a time.  These are the situations when it is convenient to merge the secondary data. 
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Merging Multiple Secondary Variables (the Super Secondary Variable) 

All secondary data can be merged as a linear combination into a single secondary variable that can be used 
in the conventional collocated cokriging. 
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Where the ci weights are calculated from the well known cokriging equations: 
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The left hand side ρi,j values represent the redundancy between the secondary data.  The right hand side ρi,0 
values represent the relationship between each secondary data and the primary variable being predicted.  
The correlation coefficient of the super secondary value with the primary variable being estimated is based 
on the cokriging variance: 
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The expression inside the square root is one minus the estimation variance, which would is precisely the 
correlation coefficient is one data is being used.  Recall that 2

,0 ,01k i iσ ρ ρ= − i  in presence of one data, 

thus 2
,0 1i kρ σ= −  given that the estimation variance is known, as is the case here. 

The single super secondary variable is used with the primary data in the well known collocated cokriging 
equations: 
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The results of equations (7) and (8) are exactly the same as that of equations (1) and (2). 

Proof of the Super Secondary Approach 

Let us now prove that the two collocated cokriging estimators presented in (1)-(3) and (4)-(9) are exactly 
the same. First, let us rewrite both collocated cokriging systems into matrix format. Specifically, the system 
(1)-(3) for cokriging with multiple secondary data can be rewritten (using Markov model) as 
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correlations between primary and multiple collocated secondary data.  The weights T
naaa ),,( 1111 …=  

and T
nbbb ),,(

sec1 …=  are given by the following system: 
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where C  is n by n data-to-data covariance matrix for the primary data ( njiC jiij ,,1,,, …== ρ ) and 

secC  is secn  by secn  matrix of correlations between multiple secondary data 

( sec,sec, ,,1,, njiC sjsiij …== ρ ). 

The system (4)-(9) for cokriging with one super secondary data can be rewritten (using Markov model) as 
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where T
naaa ),,( 2212 …=  and c  are the weights applied in estimation to the primary and super 

secondary data, respectively; as before T
nC ),,( 0,0,10 ρρ …=  is the covariance between primary data and 

the estimation location; 
secondary
superρ is given (see equations (5)-(6)) by 
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Note that secC  is the covariance matrix – positive definite, thus invertible. 

The weights for the primary and super secondary data, T
naaa ),,( 2212 …=  and c, are found from the 

following system: 
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where as before C  is n by n data-to-data covariance matrix for the primary data 
( njiC jiij ,,1,,, …== ρ ). Using the fact that (see equations (4)-(6)), 
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we can rewrite equation for the estimate of the collocated cokriging approach with one super secondary 
data as 
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Looking at systems (10)-(12) and (13)-(18), we can conclude that in order to prove that they result in the 
same outcome; we need to show that the weights received by primary and secondary data in both systems 
are the same. That is, we need to show that all of the following equalities hold 
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Proof of 1): 

Let us first consider second matrix equation of system (12), that is, 
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Using (15) and the fact that ,sec
1

sec ICC =−  where I is identity matrix of size n by n, equation (18) reduces 
to 
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Now let us consider second matrix equation of system (16), that is, 
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Recall that it follows from first matrix equations of systems (12) and (16) that 
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respectively. Thus, after subtracting equation (23) from (22), we obtain 
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Let us now return to equation (21). If we multiply both sides of equation (21) by 0C , we obtain 
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Thus, clearly, if determinant of matrix CCC T −0
2

0
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ρ  is equal to zero, the system (28) will have either 
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solution for the primary weights if and only if determinant of matrix CCC T −0
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zero. As results, we can conclude that provided that the collocated cokriging systems have unique solution, 
the weights given by both cokriging systems (1)-(3) and (4)-(9) to the primary variable are exactly the 
same. That is,  
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It follows from the second matrix equation of system (12) for the collocated cokriging weights with 
multiple secondary data that  
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Since matrix secC  is a positive-definite matrix of correlations between collocated secondary data, its 

determinant is not equal to zero. As result, it follows (29) that 0)(1
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And, thus, we have shown that the two collocated cokriging estimators presented in (1)-(3) and (4)-(9) are 
exactly the same. 

Collocated Cokriging with a Super Secondary Variable: Example 

The following example is based on the Amoco data set of Chu and Xu (1995).  A 10500 by 10500 ft 
reservoir layer is considered.  There are 62 wells in the study area.  For each well, the data on the porosity 
and thickness are available.  Water saturation for each of the 62 wells is simulated. The location maps of 
the three variables of interest, that is, porosity, thickness and water saturation, together with their univariate 
declustered distributions are shown in Figure 1.  The normal score variograms of the porosity, thickness 
and water saturation and crossplots between them in normal space are shown in Figures 2 and 3, 
respectively.  

Let us now establish the procedure to compute the mean and variance of the local conditional distributions 
of water saturation in a multivariate Gaussian context using the collocated cokriging with super secondary 
variable calculated based on porosity and thickness for the 10500 by 10500 ft Amoco reservoir layer. 

Step 1: Based on the exhaustive gridded data for the 10500 by 10500 ft Amoco reservoir layer on porosity 
and thickness, calculate the super secondary variable to be used in collocated cokriging for water 
saturation.  

1.1. For the Amoco data example Sequential Gaussian Simulation (SGS) is performed to obtain 
one full realization of porosity for the study domain; 

1.2. Then, Sequantial Gaussian Simulation with collocated cokriging is performed to obtain one 
realization of thickness collocated to porosity.  

1.3. Both simulated realizations are transformed to the normal space. 

1.4. Super secondary random variable to be used in collocated cokriging for water saturation can 
be established as (see equations (4)) 
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Thus, ,7018.01 −=c  .0631.01 −=c  And 

0.6826)179.0()68.0( 21
secondary
super =+−= ccρ . Therefore, the super secondary random 

variable to be used in collocated cokriging for water saturation is given by 

 .0925.00281.1)(  thicknessnsporosity ns
secondary
super yyuy −−=  (31) 

Step 2: Calculate the mean and variance of the local conditional distributions of water saturation using the 
super secondary variable in the collocated cokriging for the 10500 by 10500 ft Amoco reservoir layer. 

2.1 ‘Traditional’ Cokriging was performed for the water saturation. The map of the means and 
variances of the local conditional distributions of the nscore water saturation (see equations (7) 
and (8)) are given in Figure 4. 

Conclusion 

Multiple secondary data and previous primary variables are merged into a single super secondary variable.  
Consideration of this single variables amounts to using each constituent variable with the correct 
correlation.  The variable can be used in collocated cokriging with a typical Markov model or under an 
intrinsic model to avoid variance inflation (see CCG paper 107 in this report). 

The suggested workflow consists of proceeding one at a time through the primary variables.  At each step, 
all secondary data and previously simulated primary variables are merged into a super secondary variable.  
This variable would be different for each realization.  This greatly simplified the cosimulation of multiple 
variables and makes it easy to check the models as modeling proceeds. 

This paper presents a proof that using a single merged super secondary variable and appropriate correlation 
coefficient is exactly the same as considering all constituent variables individually in a more complicated 
cosimulation.  Although the notion of a super secondary variable was proposed earlier, it is reassuring to 
have the proof that the approach is theoretically justified. 
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Figure 1: Location maps of the porosity (top), thickness (middle) and water saturation (bottom), together 
with their univariate declustered distributions for the set of 62 data. 
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Figure 2: The normal score variograms of the porosity (top left), thickness (top right) and water saturation 
(bottom). 

 

 
Figure 3: The crossplots between normal score transformed porosity and normal score transformed 
thickness (top left); normal score transformed porosity and normal score transformed water saturation (top 
right); and normal score transformed thickness and normal score transformed water saturation (bottom). 
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Figure 4: The normal score water saturation data (top); maps of the means (bottom left) and variances 
(bottom right) of the local conditional distributions of the nscore water saturation. 


