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Most collocated cokriging (and cosimulation) programs are based on the use of one secondary variable;
however, it is common to have multiple secondary data. Under a multivariate Gaussian model, multiple
secondary data can be merged into one secondary variable for use in standard cosimulation software. The
idea is presented with examples. The super secondary variable must be restandardized to unit variance
and the correct correlation coefficient calculated. The theoretical validity of the approach is established.

Problem Setting

The context of this note relates to estimating a primary
variable in presence of multiple secondary data. We could be
applying the procedure in a sequential fashion, that is, a
primary variable in one pass of simulation could be a
secondary variable in a second step. In this context, we could
consider ng. secondary data consisting of exhaustively
sampled secondary data and previously simulated primary
data and one primary variable that is being predicted at the
current step. The secondary data are denoted v, i=1,...,Neec
(the colored squares in the schematic to the right). The
primary variable is denoted y, or y. We are interested in
predicting the uncertainty in y at a location of interest (the
blue circle in the schematic to the right). There are a number
of primary data at other locations y(u)=y;, i=1,...n (the
yellow circles in the schematic to the right). What is not J& Secondary data at location of interest
communicated in the schematic to the right is that there are
secondary data at all locations; however, we only use the
collocated ones when considering a location of interest.

@® Location of interest

Primary data at other locations

All secondary variables and the primary variable are standardized with means of 0 and variances of 1,
which is the case when we adopt a multivariate Gaussian model or if we simply scale the data according to
y=(z-m)/o. We are working within the classic collocated cokriging paradigm, that is, we only use
secondary data at the location being estimated and we adopt an intrinsic model for the cross covariances,
that is, the cross covariances are proportional to the covariance structure of the primary variable. We could
be estimating at the unsampled location, predicting uncertainty in PostMG fashion or, more commonly,
using the conditional distribution for simulation in a sequential Gaussian paradigm.

Collocated Cokriging

Collocated cokriging can be implemented with multiple secondary data. The form of the estimator and
estimation variance:
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The a’s and b’s are weights applied to the primary and secondary data, respectively. The p values are
correlation coefficients between each primary and secondary data and the primary variable at the location
being estimated. The secondary data are at the location being estimated and the primary data are at other
locations. The estimate and estimation variance are, of course, the mean and variance of the conditional
distribution in a multivariate Gaussian context. The equations to compute the n+ng. weights:

Nsec
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These equations can be shown in matrix form (below). Note the parts of the system measuring redundancy
between data sources (left) and closeness to what is being estimated (right).
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These are standard cokriging equations. The different correlation coefficients are computed from the
following sources:

pij» 1,1 =0,...,n correlation between primary data:

calculated from normal scores variogram: p, ;, =1-y (ui -u, )

weny Hgee

Ps,i» i=0,..,n; j=1...,n__ correlation between primary values and secondary data:
calculated from Markov model: p, ;= p, ,p;,

Ps, 50 b =0,...,n correlation between secondary data:
calculated directly from the secondary data

Note that the only variogram requires is the variogram of the primary variable, which is used to compute
the correlation between the primary data at other locations to the location being estimated. The spatial
correlation structure of the secondary data is not required because the secondary data are only used at the
location being estimated. The cross spatial correlation between primary data at other locations and the
secondary data at the location being estimated are estimated through a Markov-type assumption, that is, the
cross variograms are assumed to have the same shape — the sill is scaled to the correct cross correlation.

Software could be modified to solve these equations. There is a need, however, to use legacy code such as
the standard GSLIB program or commercial software such as Petrel© and Pangeos© that commonly permit
only one variable at a time. These are the situations when it is convenient to merge the secondary data.
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Merging Multiple Secondary Variables (the Super Secondary Variable)

All secondary data can be merged as a linear combination into a single secondary variable that can be used
in the conventional collocated cokriging.

CiYs;
_ =
ysuper ( u ) - (4)
secondary Psuper
secondary

Where the c; weights are calculated from the well known cokriging equations:

Nsec

zcj.pi,j =Pio [ :11"'!nsec ©

=1

The left hand side p;; values represent the redundancy between the secondary data. The right hand side pjo
values represent the relationship between each secondary data and the primary variable being predicted.
The correlation coefficient of the super secondary value with the primary variable being estimated is based
on the cokriging variance:

nSEC

psuper = zci °pi,0 (6)

secondary i=1
The expression inside the square root is one minus the estimation variance, which would is precisely the
correlation coefficient is one data is being used. Recall that akz =1-p, 4P, in presence of one data,

thus p; o =4/1- of given that the estimation variance is known, as is the case here.

The single super secondary variable is used with the primary data in the well known collocated cokriging
equations:

n
y = Z ai ¢ yi + Ce ysuper (7)
i=1 secondary
) n
Ok = 1- z q *Lio _C°psuper 8
i=1 secondary

The results of equations (7) and (8) are exactly the same as that of equations (1) and (2).

Proof of the Super Secondary Approach

Let us now prove that the two collocated cokriging estimators presented in (1)-(3) and (4)-(9) are exactly
the same. First, let us rewrite both collocated cokriging systems into matrix format. Specifically, the system
(1)-(3) for cokriging with multiple secondary data can be rewritten (using Markov model) as

o =ayy+b'y,, (10)

ol =1-a/Cy —bT py, (11)

where @, = (a,,...,a,,)' and b= (by,....b, )" are the weights applied in estimation to the primary
y=(Y,...,Y,)" and secondary Y, = (Yg,...,V,,) data, respectively; C, = (,oly(),...,,onyo)T is the

covariance between primary data and the estimation location; p, = (g ¢s-- -1 P4, ,O)T is the vector of
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correlations between primary and multiple collocated secondary data. The weights a, = (aﬂ,...,a,m)T

and b =(b,,. ..,bnm)T are given by the following system:

Ca, +C,p]b=C,

" (12)

pOCO ai + Csecb = pO
where C is n by n data-to-data covariance matrix for the primary data (Cij =P i,j=1...,n)and
Cee is N, by N, matrix of correlations between multiple secondary data

(Csec,ij = psi,sj' i’ J =1""’nsec)'

The system (4)-(9) for cokriging with one super secondary data can be rewritten (using Markov model) as

* T
yZ = a2 y+ Cysuper ! (13)
secondary
2 T
Ok = 1- a, CO + Cpsuper ' (14)
secondary

where a, = (a21,...,a2n)T and C are the weights applied in estimation to the primary and super
secondary data, respectively; as before Cy = (0, ..., pn’O)T is the covariance between primary data and

the estimation location; Prsuper is given (see equations (5)-(6)) by
secondary

2

T~-1
P super = po Csecpo (15)
secondary

Note that C,. is the covariance matrix — positive definite, thus invertible.

The weights for the primary and super secondary data, a, = (6121,...,a2n)T and c, are found from the
following system:

CaZ + Copsuper Cc= CO

secondary

T
psuper CO a2 +C= psuper

secondary secondary

, (16)

where as before C is n by n data-to-data covariance matrix for the primary data

(Cy =p;, 1, ]=1...,n).Using the fact that (see equations (4)-(6)),
_ 1 C—l T
ysuper - ( secpo) ys’ (17)
secondary  Pgyper
secondary

we can rewrite equation for the estimate of the collocated cokriging approach with one super secondary
data as

* 1 _
Y, = a; y+C—— (Cselcpo )T Ys- (18)
:ggg;dary

109-4



Looking at systems (10)-(12) and (13)-(18), we can conclude that in order to prove that they result in the
same outcome; we need to show that the weights received by primary and secondary data in both systems

are the same. That is, we need to show that all of the following equalities hold
1) a;, =a,, i=1..n;
and

2)b, :c;(Cs‘elcpo)i, i=1...,Nng.

super
secondary

Proof of 1):

Let us first consider second matrix equation of system (12), that is,
T
P0Gy +Cy b = p,

Multiplying both sides of this matrix equation by ng’l we obtain

sec !

P Caacl PoCo 8, +Cyo bl = 5 Corc 0y

or,

(95 Coat20)Co 3 + Py (CotCoe )0 = 05 Core

(18)

Using (15) and the fact that C_-C_.. = |, where | is identity matrix of size n by n, equation (18) reduces

sec ~sec
to

2

T Th _ A2
psuper CO al + pO b - psuper
secondary secondary

Now let us consider second matrix equation of system (16), that is,

T
psuper C0 a‘2 +C= psuper

secondary secondary

Multiplying both sides of this equation by Psuper  + WE obtain

secondary

2

T 2
Cy,a,+cC =
psuper 0 ™2 psuper psuper
secondary secondary secondary

Subtracting from equation (19) equation (20), we get

2

P

super
secondary

2

or,

2

ps'-'pef C(-)r [ai - az] + [p(-)rb - Cpsuper ] = 0
secondary secondary

Recall that it follows from first matrix equations of systems (12) and (16) that
Copob =C, -Cay,

and
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CO al + pO b |:psuper CO a2 + C’Osuper :l - ’Osuper
secondary secondary secondary

(19)

(20)

2

super
secondary

(21)
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Copsuper C= CO - Ca2' (23)

secondary

respectively. Thus, after subtracting equation (23) from (22), we obtain

Cop(;rb - COpsuper Cc= CO - Cai - [CO - Caz]!

secondary

or,

Colpsb—cp,, 1=-[Ca —Ca,]. (24)

Let us now return to equation (21). If we multiply both sides of equation (21) by C,, we obtain

COIDSZUDGT C(-)r [a:]- - az] + CO [p(-)rb - Cpsuper ] = O (25)

Due to (24), we can rewrite (25) as

Cop”, Csla,-2,]-[Ca ~Ca,]=0,

or,

[Copjpe, Cs - C}[ai -3,]=0. (26)

secondary

Thus, it follows from equation (26) that &, = @, provided that determinant of matrix Copiper Cy-Cis

secondary

not equal to zero. So, let us examine whether determinant of matrix Copfuper CJ —C could be zero.

secondary

Consider system (16), rewritten below,

Caz + Copsuper c= CO

secondary

C= psuper [1_ Cg az]

secondary

(27)

If we substitute expression for ¢ in system (27) into first matrix equation of this system, we will obtain the
following

Ca,+C,p> [l-Cla,]=C
2 0P §§5§Bdary[ 0] 0
T )
Cc= psuper [1_ CO a2]
secondary

or,

2 T 2
- [Copw Co - C}az = CO[l_ P }
secondary secondary

(28)
C= psuper [1_ Cg az]

secondary
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Thus, clearly, if determinant of matrix Copiper C, —C is equal to zero, the system (28) will have either

secondary

super
secondary

multiple or no solution depending on the vector Co{l—p2 } (see Cramer’s rule). The collocated

cokriging system with super secondary variable (16) (or equivalently (28)) has only one solution for the

primary weights @, if and only if determinant of matrix Cop2 Cq —C is not equal to zero. Similarly,
super

secondary

using simple matrix manipulations, we can show that the collocated cokriging system (12) will have unique

solution for the primary weights if and only if determinant of matrix Co,ofuper C, —C s not equal to
secondary

zero. As results, we can conclude that provided that the collocated cokriging systems have unique solution,

the weights given by both cokriging systems (1)-(3) and (4)-(9) to the primary variable are exactly the

same. That is,

a=a;=a,, I=1..,n
Thus, proof of 1) is completed.
Proof of 2):
Let us now prove that

1 . .
bi =C (Csecpo)i’ I::|‘1""nsec'
super
secondary

It follows from the second matrix equation of system (12) for the collocated cokriging weights with
multiple secondary data that

Cecb =y —pCoa= p,[1-Cyal.

Also, it follows from system (28) (rewritten system (16)) for the collocated cokriging weights with super
secondary data that

c :psuper [1_C(-)ra]

secondary
As result,
Csec b_c—(csecpo) =Csecb_csecc—(csecp0)
super psuper
secondary secondary
1 . 1
:Csecb_c—(cseccsecpo)=Csecb_c—po (29)
psuper psuper
secondary secondary
1
Zpo[l_cga]_psuper [1_Cga]—p0
secondary Psuper
secondary

= polL-Clal~[1-Clalp, =[L-Clalp, ~[L-Clalp, =0.
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Since matrix C, is a positive-definite matrix of correlations between collocated secondary data, its

Lo , 1 a
determinant is not equal to zero. As result, it follows (29) that b —¢c————(C.p,) = 0. Therefore,

super
secondary

we proved that

b, :C;(Csjcpo)i’ i :11""nsec'

super
secondary

And, thus, we have shown that the two collocated cokriging estimators presented in (1)-(3) and (4)-(9) are
exactly the same.

Collocated Cokriging with a Super Secondary Variable: Example

The following example is based on the Amoco data set of Chu and Xu (1995). A 10500 by 10500 ft
reservoir layer is considered. There are 62 wells in the study area. For each well, the data on the porosity
and thickness are available. Water saturation for each of the 62 wells is simulated. The location maps of
the three variables of interest, that is, porosity, thickness and water saturation, together with their univariate
declustered distributions are shown in Figure 1. The normal score variograms of the porosity, thickness
and water saturation and crossplots between them in normal space are shown in Figures 2 and 3,
respectively.

Let us now establish the procedure to compute the mean and variance of the local conditional distributions
of water saturation in a multivariate Gaussian context using the collocated cokriging with super secondary
variable calculated based on porosity and thickness for the 10500 by 10500 ft Amoco reservoir layer.

Step 1: Based on the exhaustive gridded data for the 10500 by 10500 ft Amoco reservoir layer on porosity
and thickness, calculate the super secondary variable to be used in collocated cokriging for water
saturation.

1.1. For the Amoco data example Sequential Gaussian Simulation (SGS) is performed to obtain
one full realization of porosity for the study domain;

1.2. Then, Sequantial Gaussian Simulation with collocated cokriging is performed to obtain one
realization of thickness collocated to porosity.

1.3. Both simulated realizations are transformed to the normal space.

1.4. Super secondary random variable to be used in collocated cokriging for water saturation can
be established as (see equations (4))

(U) _ C1 yns porosity + CZ ynsthickness

ysuper J (30)

secondary Psuper
secondary

where Yy orosity @A Vg ickness are the normal score transformed porosity and thickness

realizations and C; and C, are the weights assigned to them by equation (5) and O, IS
secondary

given by equation (6). For the Amoco data, the weights C, and C, are fond from the

following system
1 -0.345] c, -0.68
= . (30)
—0.345 1 C, 0.179
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Thus, ¢, =-0.7018, ¢, =-0.0631. And
Psper = \/Cl (—0.68) +¢,(0.179) = 0.6826 . Therefore, the super secondary random

secondary
variable to be used in collocated cokriging for water saturation is given by
ysuper (U) = _10281yns porosity 0'0925ynsthickness' (31)
secondary

Step 2: Calculate the mean and variance of the local conditional distributions of water saturation using the
super secondary variable in the collocated cokriging for the 10500 by 10500 ft Amoco reservoir layer.

2.1 ‘Traditional’ Cokriging was performed for the water saturation. The map of the means and
variances of the local conditional distributions of the nscore water saturation (see equations (7)
and (8)) are given in Figure 4.

Conclusion

Multiple secondary data and previous primary variables are merged into a single super secondary variable.
Consideration of this single variables amounts to using each constituent variable with the correct
correlation. The variable can be used in collocated cokriging with a typical Markov model or under an
intrinsic model to avoid variance inflation (see CCG paper 107 in this report).

The suggested workflow consists of proceeding one at a time through the primary variables. At each step,
all secondary data and previously simulated primary variables are merged into a super secondary variable.
This variable would be different for each realization. This greatly simplified the cosimulation of multiple
variables and makes it easy to check the models as modeling proceeds.

This paper presents a proof that using a single merged super secondary variable and appropriate correlation
coefficient is exactly the same as considering all constituent variables individually in a more complicated
cosimulation. Although the notion of a super secondary variable was proposed earlier, it is reassuring to
have the proof that the approach is theoretically justified.
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Figure 1: Location maps of the porosity (top), thickness (middle) and water saturation (bottom), together
with their univariate declustered distributions for the set of 62 data.
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Figure 2: The normal score variograms of the porosity (top left), thickness (top right) and water saturation
(bottom).
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Figure 3: The crossplots between normal score transformed porosity and normal score transformed
thickness (top left); normal score transformed porosity and normal score transformed water saturation (top
right); and normal score transformed thickness and normal score transformed water saturation (bottom).
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Figure 4: The normal score water saturation data (top); maps of the means (bottom left) and variances
(bottom right) of the local conditional distributions of the nscore water saturation.
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